By U.S. Department of Energy June 29, 2023 In dense nuclear matter, quarks “line up,” becoming essentially one-dimensional. Calculations considering that single dimension plus time can track how low energy excitations ripple through nuclear matter. Credit: Brookhaven National Laboratory Scientists at Brookhaven National Laboratory have used two-dimensional condensed matter physics to understand the quark interactions in neutron stars, simplifying the study of these densest cosmic entities. This work helps to describe low-energy excitations in dense nuclear matter and could unveil new phenomena in extreme densities, propelling advancements in the study of neutron stars and comparisons with heavy-ion collisions. The Science…
-
-
Astronomers might soon get their first peek into the dark universe. On Saturday, July 1, the European Space Agency’s (ESA) Euclid spacecraft will launch on a SpaceX rocket from Florida on a mission to peer into deep space and unveil the elusive dark universe — and NASA’s James Webb Space Telescope will be an important partner in this cosmic quest. After a month-long flight, Euclid will reach a vantage point about 1 million miles (1.5 million kilometers) from Earth, where it will share its cosmic accommodation with the James Webb Space Telescope (JWST), whose powerful infrared eye probes the universe…